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Introduction to Interactive Programming
by Lynn Andrea Stein

A Rethinking CS101 Project

Preface
Interactive Programming is an introduction to computer programming intended for students in standard
CS1 courses (or interested professionals) with no prior programming experience. It is the first textbook to
rethink the traditional curriculum in light of the current interaction-based computer revolution. Interactive
Programming shifts the foundation on which the teaching of Computer Science is based, treating
computation as interaction rather than calculation, thus providing students with a solid grounding in the
thought that underlies modern software practice. Students still learn the basic and necessary elements of
computer programming and the Java language, but the context in which they learn it is more consistent
both with Java's tools and philosophy and with the prevailing practice from which it arises.

Why Interactive Programming?

Traditionally, introductory programming teaches algorithmic problem-solving. In this view, a program is a
sequence of instructions that describe the steps necessary to achieve a desired result. The 'pieces' of this
program are these steps. They are combined by sequencing. The program produced is evaluated by means
of its end result. Students trained in this way often have difficulty moving beyond the notion that there is a
single thread of control over which they have complete control.

In contrast, most programs of interest today are made up of implicitly or explicitly concurrent components
that interact to provide ongoing services. Buzzwords such as "client/server" and "event-driven" are part of
the descriptive language of this new generation of programs. Embedded systems and software agents typify
their incarnations. User interface design, distributed programming, and the world-wide web are logical
extensions of a way of thinking that has interaction at its core.

When programming is taught from a traditional perspective, important topics like these are treated as
advanced and inaccessible to the introductory student. It is unsurprising that senior software engineers
report that today's undergraduates are ill-equipped to handle the realities of embedded interactive software.
Most require on-the-job retraining to "think concurrently." Students trained in the traditional curriculum
are often so indoctrinated in the "sequence of steps" mentality that they can no longer rely on the intuition
common to every child coordinating a group of friends or trying to sneak a cookie behind her parent's back.

Interactive Programming provides an alternate entry into the computer science curriculum. It teaches
problem decomposition, program design, construction, and evaluation, beginning with the following
premises: A program is a community of interacting entities. Its "pieces" are these implicitly or explicitly
concurrent entities: user interfaces, databases, network services, etc. They are combined by virtue of
ongoing interactions which are constrained by interfaces and by protocols. A program is evaluated by its
adherence to a set of invariants, constraints, and service guarantees -- timely response, no memory leaks,
etc.

Because it begins from this alternate notion of what programming is about, Interactive Programming tells
a rather different story from the traditional introductory programming book. By its end, students are
empowered to write and read code for client-server chat programs, networked video games, web servers,
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user interfaces, and remote interaction protocols. They build event-driven graphical user interfaces and
spawn cooperating threads. Each of these programs -- all of which are beyond the scope of traditionally
taught introductory courses -- is a natural extension of the community metaphor for computation.

Many computer science departments are contemplating a change to the Java programming language for
introductory computer science courses. While it is possible to make this change without transforming the
introductory curriculum, adopting Java without a corresponding curricular change amounts to sweeping
more and more of what is important in today's computational world under the rug. Java embodies much of
modern programming practice. Insisting on traditional approaches actually makes certain aspects of the
language less accessible. Shifting to a curriculum in which concurrent interacting entities play a central
role makes far more of modern computation theory, practice, and tools accessible to today's introductory
student.

A more complete argument for rewriting the introductory computer science curriculum in this way is
contained in "What We've Swept Under the Rug: Radically Rethinking CS1" (Computer Science Education
Journal, to appear). See also http://www.ai.mit.edu/projects/cs101/.

Ramifications for Later Curriculum

Interactive Programming includes a number of topics not often taught to introductory students: networks,
user interfaces, client/server architecture, and event-driven programming. At the same time, students will
develop a basic facility for programming and for problem decomposition, the most crucial skills taught in
most existing CS1 courses.

In all respects, this course is still an introductory programming course. Its thematic lesson concerns a
model of computation as interaction, rather than calculation. But its pragmatic goals include most of the
skills that are learned in standard introductory CS. The fundamental lesson of this course remains how to
take a description of a problem and construct a program whose behavior solves that problem. It differs
from traditional courses in its underlying assumptions, the kinds of descriptions that can be considered, and
the corresponding conceptualizations that are used to build a program. The computational constructs and
modeling tools have changed; the problem still remains the programming.

As a result, this new CS1 course requires little revision of the rest of the computational course sequence.
Upper level courses can continue as they are, but are likely to find their task simplified somewhat by the
new perspective that students bring to them.

The remainder of the curriculum which begins with an introduction to computation on these terms may
thus look much like the existing computer science undergraduate curriculum. Nonetheless, there are subtle
but significant improvements. Several important topics that are currently covered only in advanced
undergraduate or graduate level classes can be introduced earlier in the curriculum. For example, topics in
distributed algorithms and parallel complexity -- such as the time/processor tradeoff -- can be taught in the
first course in computer science theory if the model of parallel computation is already familiar. Since
modern algorithms increasingly makes use of such approaches, it seems only natural to expose our
undergraduates to the fundamental ideas in these areas.

Other topics, already present at the undergraduate level, become much easier to explain when students
come equipped with this world view. Much of operating systems becomes an exploration of different
methods for implementing and ensuring appropriate behavior multiprocessing, rather than focusing on the
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concept of parallel execution itself. Students seeing these ideas for the second time, now in depth, are more
likely to appreciate some of the subtleties of the problem rather than being confused by the many levels at
which operating system code must operate. Synchronization and interprocess communication can be
introduced along with scheduling. Transaction-safety, remote procedure call, and shared memory models
similarly follow smoothly from this approach.

Further, a whole host of issues that now fit into our curriculum poorly, if at all, now become sensible parts
of the model of computation that we teach our students. For example, the traditional curriculum has a
tremendously difficult time introducing the topic of user interfaces. In many schools, this "special case" is
tacked on to the curriculum as an afterthought (or altogether ignored), largely because it just doesn't fit. To
readers of this book, however, accounting for the role of the user becomes straightforward. The user is
another member of the community of interacting processes that together constitute our computation. The
programmer's job is to develop an acceptable interface that gives each participant -- program or person --
an appropriate set of responsibilities and services. Of course, a human has different skills and needs from a
computer program, but this, too, is a natural part of our larger way of thinking -- and teaching -- about
computational systems.

Teaching computation this way also has the potential to harness our students' natural instincts. Traditional
introductory courses tell their students, "Forget all of your intuitions about how the world works. This is
computation; it is nothing like the world in which you live." Instead, Interactive Programming teaches that
computation is very much like the world in which we live. It harnesses our intuitions about that world---
about simultaneity and ordering constraints, about when it is more useful to partition a task and when it is
simpler not to, and about what information must be available to whom at what time and how to get it there-
--and teaches readers to use that intuition to become better programmers.

A Short History of the Rethinking CS101 Project

This book is a part of a larger project to reshape the ways in which introductory computer science is taught
(and, indeed, the ways in which the field itself is conceptualized). The Rethinking CS101 Project grew out
of work in a variety of computational fields -- artificial intelligence, robotics, software agents, human-
computer interaction, as well as programming languages -- and their common difficulties with the
conventional wisdom concerning how computation is constituted. For example, introductory computer
science teaches that a program's job is to calculate some desired result and then to stop. When a robot
stops, however, this is generally a sign that it has broken. (Further, there's not really a "result" that the
robot "calculates"; instead, it is supposed to continually exhibit appropriate behavior.)

Research Roots

In the early 1990s, the author worked to bring intuitions about computation into the classroom through the
use of simple, inexpensive robotics. The use of robots enabled a focus on software life cycle, non-
repeatability, and pragmatic software engineering uncommon in traditional introductory classrooms. The
curriculum that developed from this experimentation marked a radical departure from the traditional
single-threaded, sequentialist story.

The use of robotics clearly forced a shift in perspective in the introductory programming curriculum. In the
first half of the decade, this shift was echoed, if more subtly, in the popular software market through
approaches such as event-driven programming, client-server architectures, and enterprise computing.
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Those techniques -- increasingly important to industry -- were still not deemed suitable for an introductory
computing classroom. Nonetheless, they were inescapably changing the face of the computing sciences.
Computing-in-the-raw is no longer calculate-and-stop. Instead, it is made up of agents and services,
communities of ongoing interacting entities. Yet today's introductory classrooms shed little light on these
now-prevalent industry practices.

Courses taught during this period included MIT freshmen, MIT graduate students, and international
researchers in artificial intelligence. Spin-offs of these efforts include robotics classes at a variety of
universities and colleges as well as the now-annual Robot-Building Laboratory at the National Conference
on Artificial Intelligence and the establishment of the KISS Institute for Practical Robotics (of which the
author is an Institute Fellow).

With the advent of the world-wide web and the popular adoption of Java, a new avenue towards teaching
these approaches has been opened. The current Rethinking CS101 Project has shifted its focus away from
physical robots and towards the underlying principles of interactive computation as illustrated by purely
software systems. (A side effort within the project continues to pursue the robot hook, both in software
simulations and in the interests of capitalizing on the newly emerging commodity robot market. Although
robots are not central to the curricular shift represented by this project, they are easily integrated into its
methods and models.) Interactive Programming represents the codification of the underlying approach to
computation in a form suitable for adoption in otherwise-traditional university computer science curricula,
thereby bringing them closer to state-of-the-art practice.

Classroom Experience

The curriculum presented in Interactive Programming has been taught in a variety of venues. The first
course taught with the current set of materials was held in the summer of 1996, in a one-week intensive
minicourse using the Java 1.0 API and Sun's JDK, the only Java available at the time. Its students were
executives, managers, and a few software engineers enrolled in MIT's Summer Professional Programs. The
majority had no substantial prior programming experience.

The course was subsequently taught twice in MIT's regular curriculum. Students were largely first-
semester freshmen and others with no prior programming experience. (The course is also popular among
advanced students in non-computational fields who want a single semester of computational coursework.)
Student feedback has been resoundingly positive. The MIT course has been adopted by the EECS
Department as a regular offering and is listed in the catalog as subject number 6.030, Introduction to
Interactive Programming.

Precursors to this textbook were also used in teaching several other minicourses to professional audiences.
These include the 1997 and 1998 Professional Institutes at MIT and a tutorial offered at the ACM
SIGPLAN's Conference on Object Oriented Programming Systems, Languages, and Applications
(OOPSLA '97). Students in these courses included software professionals, academics, and trainers.
Generally versed in traditional programming, they attended the minicourses to learn a new way to think
about computation.

Other instructors have used the beta release of the textbook. In the fall of 1998, the course materials was
used at a handful of undergraduate institutions with student bodies substantially less sophisticated than
MIT's, as well as an advanced class in a secondary school. Serious beta testing began in the fall of 1999,
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when over a thousand students at more than a dozen colleges and universities around the world used
Interactive Programming as their primary text. Additional non-traditional classroom tests are also
underway. Ultimately, the textbook is intended for deployment in mainstream undergraduate classrooms as
well as certain advanced secondary classes, perhaps AP.

The curriculum itself has attracted widespread attention. It has been presented at a variety of international
meetings and its agenda is documented in a variety of publications (see enclosures). The Rethinking CS101
Project at MIT has recently received the donation of a 30-machine teaching laboratory from Microsoft
Research/University Curriculum Programs. A strategic relationship with Sun Microsystems is also under
negotiation, and the National Science Foundation has selected Rethinking CS101 for an Educational
Innovation Award.

How to Use This Book

Interactive Programming is designed for use by students who have no prior programming experience
(typically college freshmen). It ultimately teaches both the fundamentals of computer programming and the
details of the Java programming language.

The book is divided into five parts. The first briefly overviews the idea of programs built out of
communities of interacting entities. The second part introduces the mechanics of Java programming, from
things, types, and names to objects and classes. It is essential to the book and is intended to be read in the
order presented. Part three elaborates on these ideas, introducing threads as first-class citizens of the
programming world and exploring inheritance, exception-handling, and design. Part four emphasizes a
variety of issues in the design of an individual entity. It is not necessary to read this section in any
particular order, and certain chapters can be omitted entirely without serious detriment. Part five similarly
surveys a variety of interrelated topics, in this case concerning the ways in which communities are coupled
together, and its chapters, too, can be taken out of order or omitted.

The five parts, taken together, constitute a single-semester introductory course in computer programming.
In such a course, some of the supplementary material (described below) will not be used. For a one-quarter
course, part five and selected earlier chapters should probably be omitted. Alternately, the complete book
can be spread over two quarters or over a full year, augmented as necessary from the supplementary
materials.

Part By Part

Part 1 is brief and introductory, providing an overview of the approach to computer programming taken.
Part 2 begins with the basic syntax and semantics of programming constructs. At the same time, from the
earliest examples, students are introduced to concurrent, interactive, embedded programs. For example,
interfaces are introduced early as they specify a contract between two parts of a computer system. By the
middle of part 3, students have learned to write what might in other contexts be called "stand-alone"
programs -- complete programs including class definitions and a main routine. They have also learned that
every program is a part of a system of interacting entities -- including the user, libraries and other software,
hardware, etc. -- and that no program truly stands alone.

The remainder of the book addresses issues and alternatives that arise in the design of software
communities. Part 4 focuses on ways to extend the basic entities that students build. The notion of a
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dispatching control loop provokes an exploration of procedural abstraction, in which separate routines
handle each possible case. This in turn leads to a de-emphasis of the central control loop and a shift to
event-driven programming, in which individual "handler" procedures take center stage. In a typical event
system, dispatch may be provided implicitly, i.e., by underlying hardware or software. A third model --
smart objects that handle their own behavior -- is also explored. Java's AWT is introduced as both a tool
and an example of an event-based system.

Part 5 addresses the issue of how entities are tied together. A recurring theme -- throughout the book, but
emphasized here -- concerns interface design. This refers both to the Java construct -- a signature
specification, introduced in chapter 4 -- and to the more general concept, including human (user) interface
design. In addition to learning how to specify an interface, students learn what the interface does not
specify. In other chapters, students learn about streams, messages, and shared memory, about connecting to
objects in the same name space and to those running under different processes or on different machines,
and about how to communicate with them. They also learn the basic ideas of safety and liveness, that
shared mutable state can lead to program failures, and some simple mechanisms for coping with them.
They do not, of course, learn to build arbitrarily complex programs that avoid deadlock under all
circumstances. This topic will be visited later in the computer science curriculum. Instead, they learn to
recognize the general preconditions for the possibility of safety failures and the kinds of solutions that
might be possible. The goal, throughout this course, is to give students the basic conceptual vocabulary
that will allow them to ask the right questions as they meet more complex issues later in their education.

Interactive Programming ends with an overview of various patterns of large-scale systems architecture,
reviewing tradeoffs among various approaches and providing a common language for software architects.
The last chapter examines conventional patterns by which complex concurrent and distributed systems are
constructed. The emphasis is on designing and understanding a variety of interactive communities. This
chapter also leads naturally into final projects. In courses taught using this curriculum and preliminary
drafts of the book, typical final projects have included client/server chat programs and networked video
games. Not what you would generally expect from first semester freshmen!

Pedagogical Elements and Supplementary Materials

Although this book is primarily intended for an introduction to computer science course, it will include
enough reference material to stand alone as a self-study course in Java, without requiring a language
supplement. Three kinds of supplementary materials help provide this support: in-chapter sidebars,
between-chapter interludes, and auxiliary case studies. Reference charts and a glossary are also included.

To avoid muddying the text with too many language-specific details, sidebars are used throughout to
explain details of Java syntax and semantics. The text explicates the conceptual development of the ideas;
the sidebars are intended to provide detailed information on technical aspects of the language or the
programming process.

Sidebars come in two flavors. Syntax sidebars explain language-specific details and pragmatics in the form
of a reference manual. Style sidebars explain good documentation and coding practice. The use of sidebars
serves two purposes. First, it frees the main text of some of the details that confuse rather than elucidate
the presentation of central concepts. Second, the sidebars, together with the reference charts in Appendix
B, form a supplementary desktop reference for students while they are programming.
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The narrative of the book is periodically interrupted for an extended example, called an interlude.
Interludes are adapted from potential programming assignments. They are presented between chapters,
rather than within them, and can be included or omitted at the instructor's preference. Interludes provide
detailed illustrations for the student to study. They exemplify the themes of the course in terms of the
material studied to that point. They also provide the basis for exercises allowing students to practice and
assess their mastery of relevant skill sets. Complete code for each interlude is supplied on the textbook's
web site.

Also supplementing the book is a set of case studies. These are not included within the bound text. Instead,
they will be made available over the world-wide web. The case studies provide descriptions of current
applications exemplifying the principles central to the course. For example, one case study is based on an
article in the trade literature on constructing an http server. With only minor modification, this article is an
excellent illustration of the relevant themes of the course as well as a concrete example of a real-world
application that is accessible to students in the later chapters.

In addition to the materials described above, the supporting materials include a set of exercises, lecture
notes, programming assignments, and sample quizzes. Some exercises appear chapter by chapter in the
bound book. Other resources are available through the online supplement.
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