
Interactive Programming In Java Page 1

http://www.cs101.org/ipij/exprs.html 09/18/2003 11:54:46 AM

html,v 1.1 2003/06/11 19:39:26 jon Exp $

Introduction to Interactive Programming

By Lynn Andrea Stein

A Rethinking CS101 Project

Chapter 5.

Expressions: Doing Things With Things

Chapter Overview

How do I use the Things I have to get new (or other) Things?

This chapter and the next introduce the mechanics of executable code, the building blocks
for individual sequences of instruction-following. Chapter 3's Things each come with a type, which
specifies how that Thing can interact. An expression is a piece of code that can be evaluated
to yield a Thing with a value and a type.

Simple expressions include literals -- Things that Java literally understands as you write
them -- and names, which stand in for the Things that they refer to. More complex expressions are
formed by combining other Things according to their types, or promised interactions.

To understand a complex expression, you must understand its parts (a basic form of "what
goes inside") and how they are combined (a basic "how they interact"). Sometimes, you have to
understand this without knowing all of the details of what's inside.

This chapter introduces several new kinds of expressions. Instance creation expressions,
field access, and type membership expressions all involve objects. Most operations involve
primitive types. And some other expressions -- assignment, equality testing, and explicit casting --
can be used with either objects or primitive Things. For each of these kinds of expressions, this
chapter explains its syntax as well as the type and value of the resulting Thing.

Sidebars in this chapter cover details of various Java operators, including casts and
coercion rules. A separate supplementary reference chart -- Java Charts/Expressions --
summarizes the syntax and semantics of Java expressions.

Interactive Programming In Java Page 2

http://www.cs101.org/ipij/exprs.html 09/18/2003 11:54:46 AM

Objectives of the Chapter

1. To understand that an expression is a piece of java code with a type and a value.

2. To become familiar with the rules of evaluation for basic Java expressions.

3. To learn how to understand complex expressions as combinations of simpler expressions.

4. To be able to evaluate both simple and complex expressions, giving the resulting type and
value.

5.1 Evaluating an Expression Produces a Thing

In the preceding chapters, we have learned that Things have types as well as values. We have seen how
a type tells you what an instance of that type can do. We have also seen three different ways to get our hands
on a Thing:

A literal, like 6, is a Thing that Java understands directly. Rules for interpreting literals (from the sidebar
on Java Primitive Types) specify the literal's type.

A name, like theClock, refers to the Thing to which the name is bound. A name is declared to have a
specific type.

A request, like theClock.getTime(), returns the Thing that is the (return) value provided by theClock's
getTime() service. A method signature specifies the type of Thing that a service returns.

Each of these ways of obtaining a Thing is an example of an expression, a piece of code that can be
evaluated to produce a value (or Thing) of a particular type. To evaluate an expression simply means to
calculate the value of the expression. In a computer program, every value is produced by an expression. This
chapter investigates many of the different kinds of expressions found in Java.

An expression is the simplest piece of Java code. An instruction-follower--an execution of Java code--
evaluates the expression to obtain its value, which will always be of the expression's type. There are many kinds
of expressions, and each has its own rules of evaluation that determine what it means for an instruction-
follower to evaluate that expression. Each kind of expression is distinguished by the way that its value and type
are produced, and these -- together with the syntax of the expression -- are the important features of
expressions that you will need to learn.

In addition to the three kinds of expressions mentioned above--literals, names, and service requests--
there are expressions that do arithmetic, assign values to names, and create or compare objects. Legitimate Java

Interactive Programming In Java Page 3

http://www.cs101.org/ipij/exprs.html 09/18/2003 11:54:46 AM

expressions include 2 + 2, "Hi, there", and this.out.writeOutput(this.in.readInput()). The
last of these is an expression whose evaluation involves inter-object (and inter-entity) communication.

In this chapter, we will examine many different kinds of expressions and learn what values and types
they produce. We will begin with the kinds of expressions that we have already seen.

5.1.1 A Literal Is What It Looks Like

Expressions are ways to get your hands on Things. A simple way to get your hand on a Thing is to
spell out the Thing that you want. So the very simplest Java expression is a literal: an expression whose value
is interpreted literally, such as 25 or 32e-65 or "How about that?". Java literals include the various kinds of
numbers, characters, Strings, and booleans. For a more complete enumeration of literal expressions and rules
regarding their syntax (i.e., how you write them), see the sidebar on Java Primitive Types in chapter 3.

are the ints, doubles, chars, booleans, or Strings that they appear to be.
Every expression

has a value and a type,
obtained by evaluating the

expression. The value of a literal is its prima facie value, i.e., what it appears to be. The type of an expression is
the type of its value. Integer literals are always of type int unless an explicit long type suffix (l or L) is
included in the literal. Non-integral numeric literals are always of type double unless explicitly specified to be
of type float (using the f or F suffix).

Of course, not all Java Things can be spelled out explicitly. In fact, except for String objects, only
Things with primitive types can be literals.

5.1.2 A Name Has An Associated Value (and Type)

Another simple way to get your hand on a Thing is to have it around in the first place. Names -- labels
for objects, dials for primitives -- are also Java expressions. A name is only a legitimate expression within its
legitimate lifetime, i.e., within its scope. For present purposes, it suffices to think of a scope as beginning when
the name is declared. [[Footnote: Strictly speaking, the scope of a variable -- a name with no special properties beyond being a
name -- begins at its declaration and extends to the end of the enclosing block. (See the section on blocks in the chapter on Statements.)

Later, we will see three other kinds of names: classes, fields and parameters. Class names have scope throughout a program or package;

they may be used anywhere. Field names have scope anywhere in their enclosing class, including textually prior to their declaration.

Parameter names have scope throughout their method bodies only.]]

has its declared type and most recently assigned value.
The value of a name is the value

currently associated with it, i.e., labeled by it, if
it is a label name, or recorded on the dial, if it is

a dial name. The type of a name expression is always the type associated with that name at the time of its
definition. [[Footnote: Note that the type of a name expression is the declared type of the name rather than the type of the value

Interactive Programming In Java Page 4

http://www.cs101.org/ipij/exprs.html 09/18/2003 11:54:46 AM

associated with the name. That is, even where there is disagreement between the declared type of a name and its value, the type of a name

expression is always its declared type.]]

For example, if we are within the scope of a declaration that says

int myFavoriteNumber = 4;

and nothing has occurred to change the value associated with (recorded on the dial called) myFavoriteNumber,
then the value of the expression

myFavoriteNumber

is 4 and its type is int. That is, the int 4 is the result of evaluating myFavoriteNumber.

5.1.3 Method Invocation Asks an Object to Do Something

Literals and names are simple Java expressions. In each case, a single Thing is involved. We have also
seen expressions in which an object is asked to do something or to provide us with a value. In the previous
chapter, we learned that the way that an object performs the service is called a method. This kind of expression
-- asking an object to provide a service -- is formally calledmethod invocation. Method invocation is the
primary way in which one object asks another to do something. It is the primary basis for inter-entity
communication and interaction, because it is the main way in which objects talk to one another.

In Java, a method invocation involves:

An expression whose value is the object to whom the request is directed, followed by

A period (or "dot"), followed by

The name of the method to be invoked, followed by

Parentheses, within which any information needed by the method request must be supplied.

An example method invocation might be

"a test string".toUpperCase()

of method invocation:

. method(arglist)

ype and value as declared by the object's method.

This example consists of a String literal expression --
"a test string" -- and a request to that object to
perform its toUpperCase() method. A String's
toUpperCase() method doesn't require any
additional information, so the parentheses are empty.

(They can't be omitted, though!) This invocation matches the method signature of the String toUpperCase()

method as described in the Selected String Behavior sidebar of Chapter 3.

The value of a String's toUpperCase() method is a new String that resembles the old one, but contains
no lower case letters. Its type is the return type declared in the toUpperCase() method signature: String So

Interactive Programming In Java Page 5

http://www.cs101.org/ipij/exprs.html 09/18/2003 11:54:46 AM

the value and type of this expression are the same as the value and type of the literal expression "A TEST

STRING".

Another example of method invocation is

Console.println("Hello")

This asks the object named by the name expression Console to print the line supplied to it. It requires that a
String -- the line to be printed -- be supplied inside the parentheses. This is "necessary information" is called an
argument to the method. It corresponds to the parameter specified by Console's println method signature.

What is the value of this method invocation expression? Console.println("Hello") is a method
invocation whose primary use, like that of assignment, is for its side effect, not its value. We use this method to
make something appear on the user's screen. Good style dictates that we wouldn't use this expression inside
any other expression. It turns out that many methods have no real return values, so (as we saw in the previous
chapter) there's a special Java type for use on just such occasions. This type is called void. It is only used for
method return types, and it means that the method doesn't return anything.

Method invocation differs from literals and names in that method invocation expressions can contain
other expressions. In both of these examples -- "a test string".toUpperCase() and Console.println(
"Hello") -- expressions such as "a test string", "Hello", and even Console had to be evaluated before
the method invocation expression itself could be evaluated. This makes method invocation a compound
expression: one that can contain other expressions within itself.

The complete evaluation rule for a method invocation expression is as follows:

1. Evaluate the object expression to determine whose method is to be invoked.

2. Evaluate any argument subexpressions.

3. Evaluate the method invocation by asking the object to perform the method using the information
provided as arguments.

4. The value of the expression is the value returned by the method invocation. The type of the method
invocation expression is the declared return type of the method invoked.

In order for step 3 to work, the object must know how to perform the method, i.e., it must have
instructions that can be followed in order to produce the return value needed in step 4. We have already seen
how an interface can describe an object's commitment to provide such behavior. We will see in the next
chapters how this commitment may be accomplished in detail.

From the perspective of the method invoker, however, the transition from step 3 to step 4 happens by
magic (or by the good graces of the object whose method is invoked). The object offers the service of
providing a particular method requiring certain arguments and returning a value of a particular type. For
example, if we look at the documentation (or code) for String, we will see that it has a toUpperCase() method

Interactive Programming In Java Page 6

http://www.cs101.org/ipij/exprs.html 09/18/2003 11:54:46 AM

that requires no arguments and returns something of type String. The println method of Console requires a
String as an argument, and println's return type is void. We will learn more about the methods that objects
provide in the chapters on Classes and Objects and Designing with Objects.

Java Notes

String Concatenation

It is often useful to be able to combine two Strings by gluing
them together. This is called concatenation. For example,
concatenating the Strings "silvers" and "word" results in the String
"silversword". Because this is such a common operation, Java
provides a shorthand for String concatenation. In Java, you can
concatenate two Strings by writing a + between them:

"silvers" + "word"

is the same Thing as "silversword". This is actually a form of
operator expression.

5.2 Combining Expressions

Since expressions are Things -- with types
and values -- expressions can be combined to build
more complicated expressions. For example, the
expression "serendipitous".toUpperCase() has
the type String and the same value as the literal
"SERENDIPITOUS". That is, you can use it anywhere
that you could use the expression "SERENDIPITOUS".
So, for example, you could get an adverbial form of
this adjective by using "serendipitous".toUpperCase() + "LY", producing the same Thing as
"SERENDIPITOUSLY" (see the sidebar on String Concatenation), or extract the word "REND" using
"serendipitous".toUpperCase().substring(2,6) (see the Selected String Behaviors sidebar in Chapter
3).

In general, since every expression has a type, you can use the expression wherever a value of that type
would be appropriate. The exception to this rule about reuse of expressions is that some expressions are
constant -- their value is fixed -- while other expressions are not. A few specific Java contexts require a
constant expression. In these cases, you cannot use a non-constant expression of the same type. (For example,
"to"+"get"+"her" is a constant expression, but str+"ether" is (in general) not, even if str happens to
have the value "tog". [[Footnote: The expression str+"ether" would be constant if str were declared final, though.
Names declared to be final cannot be assigned new values.]]) There are a few places where Java requires a constant
value. These will be noted when they arise.

The evaluation rule for a compound expression is essentially the same as the evaluation rules for the
expressions that make it up: Evaluate the subexpressions that make up this expression, then combine the
values of these subexpressions according to the evaluation rule for this expression. For example, when we
evaluate "serendipitous".toUpperCase(), we are actually evaluating the simpler (literal) expression
"serendipitous", then evaluating the method invocation expression involving "serendipitous" 's
toUpperCase() method. Similarly, str + "ether" evaluates the (name) expression str and the (literal)
expression "ether", and then combine these values using the rules for + expressions, detailed below. In this
case, str and "ether" are subexpressions of str + "ether". There are two additional details: 1) Evaluating
the subexpressions may itself involve several evaluations, depending on how complex these expressions are
and 2) it may not always be clear which operation should be performed first.

Interactive Programming In Java Page 7

http://www.cs101.org/ipij/exprs.html 09/18/2003 11:54:46 AM

Method invocation, like other expressions, can be used to form increasingly complex expressions. For
example, we can combine two method invocations we used above to cause the value of "A TEST STRING" to
appear on the user's screen:

Console.println("a test string".toUpperCase())

In this case, the value of the toUpperCase() invocation is used as an argument to println. We can also cascade
other kinds of expressions, such as

"This is " + "a test string".toUpperCase()

or

Console.readln().toUpperCase()

Style Notes

Don't Embed Side-Effecting Expressions

When you use a side-effecting expression, it is best if this
expression is not a subexpression of any other expression. So, for
example, while assignments--as expressions--can be used inside othe
expressions, it is generally considered bad style to do so. Embeddin
side-effecting expressions inside other expressions can make the
logic of your code very difficult to follow. Side effects are also
important and often difficult to catch. By highlighting the side
effecting expression by making it the outermost expression, you are
increasing the likelihood that it will be read and understood.

5.3 Assignments and Side-
Effecting Expressions

Literals, names, and most method invocations
are used to produce Things: values with types.
However, some expressions are evaluated not for the
Thing that result but for some other effect that
happens when the expression is evaluated. This
thing-that-happens is called a side effect. We have
actually seen examples of this already: an assignment
is a prototypical side-effecting expression.

In previous chapters, we have seen some simple assignments including some that were mixed with
declarations and buried inside definitions. In its simplest form, an assignment involves a name and an
expression whose value is to be assigned to that name:

aString = "Something to say...."

ment is used for its side effect, not its type and value.
The point of the assignment expression is to
associate the name -- aString, in this case -- with
the value of the Thing after the =. It is this side

effect -- the binding of a name to a value -- that is generally why one uses an assignment statement.

In its most general form, an assignment expression is

name = someExpression

The right-hand side of the assignment expression -- what comes after the = -- can be any expression. The left-
hand side of the assignment expression -- what comes before the = -- must be a name or another expression
that can refer to a label or a dial. In this context, and in this context only, the name expression refers to the label

Interactive Programming In Java Page 8

http://www.cs101.org/ipij/exprs.html 09/18/2003 11:54:46 AM

or dial itself, not to the particular value currently associated with the name. Of course, the type of the name on
the left-hand side must be compatible with the type resulting from the evaluation of the expression on the
right-hand side.
[[Footnote: Odd as it may seem, left-hand side -- or its shorthand, lvalue -- is actually a technical computer science term. It refers to the

name in an assignment expression, which is treated as a location -- a label or dial -- rather than as a true sub-expression of the assignment.

The term lvalue is used even when the programming language in which the assignment is written does not position the name on the left-

hand side!]]

Although assignment is generally used for its side effect, it is an expression. This means that evaluation
of an assignment must produce a Thing -- a value with a type. The type of an assignment is the type of its left-
hand side. The value of an assignment expression is the value assigned to the left-hand side, i.e, the value
produced by evaluating its right-hand side.

For example, assuming that aString has previously been declared to be a String, the type of the
expression

aString = "Something to say...."

is String because that is the type associated with the name aString. The value of the expression is
"Something to say...." because that is the value assigned to aString.

An assignment is a side-effecting expression: although its evaluation produces a type and a value, it has
another effect that is often -- if not always -- more important. Some method invocations -- service requests --
are similarly side-effecting. For example,

Console.println("^*&$%")

is a side-effecting request that causes something to be printed on the user's computer screen. Side-effecting
methods often -- though not always -- have return type void -- no return value. This helps to make it clear that
such a method is to be used for its side effect, since it does not provide a useful return value. All void methods
should be side-effecting -- otherwise they do nothing at all! -- but not all side-effecting methods are necessarily
void methods.

Assignment statements and void methods are among the most common expressions used for their side
effects. We will see several other expressions with important side effects in the remainder of this chapter. In
the next chapter, we will explore the use to which such side-effecting expressions can be put.

5.4 Other Expressions that Use Objects

Some kinds of expressions work only with objects. We have already seen how to request that an object
perform a service through method invocation, perhaps the most common object expression. In this section, we
cover three additional expressions that use objects: field access, instance creation, and type membership. Each
of these kinds of expressions will be discussed further when we explore how objects are actually created

Interactive Programming In Java Page 9

http://www.cs101.org/ipij/exprs.html 09/18/2003 11:54:46 AM

beginning in the chapter on Classes and Objects. In this chapter, it is sufficient to recognize these kinds of
expressions and to understand their associated types and values.

5.4.1 Fields

We have seen that an object may provide services in the form of methods. Some objects also provide
data in the form of a name. For example, the object called Math provides a double (dial) called PI, which has
(is set to) a value that is a little more than 3.14159.

Like a method, a field is accessed using the dot syntax, but without following parentheses. So, for
example,

Math.PI

is the double dial belonging to the object called Math, with a value approximating a real number whose most
significant digits are 3.14159.

cess is

. method

es like a name: declared type and most recently assigned value.

A field access expression is
essentially a name expression, though
a more complex one than the simple
names described above. The value of
a field access expression is -- as for a

simple name -- the value associated with the label or dial. The type of a field access expression is -- also like a
simple name -- the field's declared type.

We can use field invocations in compound expressions, too. If myWindow is a Window with a
getSize() method that returns a Dimension,

myWindow.getSize().height

first asks myWindow to perform its getSize() method, resulting in a particular Dimension object, then asks
the Dimension object for its height field. This compound expression is the same as first creating a name for
the Dimension and assigning it the result of the method invocation:

Dimension mySize = myWindow.getSize();

and then asking the newly named Dimension object, called mySize, for its height field.

Because field access expressions are actually name expressions, they also have special behavior on the
left-hand side of an assignment statement. That is, you can assign to a field access expression just as you would
to a simple name, and the field access expression behaves like the label or dial to which it refers. For example,
if height is an int dial owned by mySize, the expression

mySize.height = mySize.height / 2

halves the value contained in the height dial of mySize, which might shrink mySize vertically by half.

Interactive Programming In Java Page 10

http://www.cs101.org/ipij/exprs.html 09/18/2003 11:54:46 AM

5.4.2 Instance Creation

In the previous chapter, we looked at some object types called interfaces. An interface specifies an
object's contract, but not its implementation. In chapter 7, we will learn about another object type, called a
class. A class is an object type that has an associated implementation. A particular object -- an instance -- is
often manipulated using an interface in order to separate the object's user from its implementation details. But
when you want to create a new instance, you need to have an implementation as well as a contract. This means
that you need a class.

Instance creation is a kind of expression that uses a class to create a new instance of that class. The
details of this expression type are covered in the chapter on Classes and Objects; for now it is enough to
recognize it.

An instance creation expression has three parts: the keyword new, the class (type) name, and a (possibly
empty) list of arguments, enclosed in parentheses. This description of how to write an expression is called its
syntax, and we can abbreviate it as:

new ClassName (argumentList)

of instance creation:

assName(arglist)

ClassName; value is a new instance.

For example,

new File ("myData")

creates a new File object with external (outside of Java) name
myData. Like all other expressions, this one has a type -- ClassName,

the kind of object created, in this case File -- and a value -- the new object created. The instance creation
expression is typically used inside an assignment or method invocation.

The rules of evaluation for instance creation expressions are similar to the rules of evaluation for
method invocation. The return value is always a new instance of the type (or class) whose instance creation
expression is invoked (in this case, File). The return type is always the type whose instance creation is invoked.
Instance creation is a side effecting expression (since it creates a new object).

5.4.3 Type Membership

There is one last operator that is usable only with objects. This is an operator called instanceof,
which checks whether an object has (or can have) a certain type. For example, is the Thing in my pocket a
String?

When would an object of one type be an instance of another? There are at least three different ways
that this could happen, all of which are covered in more detail elsewhere in this book. First, one type may be a
specialization of another. For example, a collie is a kind of a dog, so an object can simultaneously be a collie
and a dog. Second, one type-contract (interface) can have multiple implementations (classes), like a telephone
that may use wires or cellular transmission or satellite to send its signal. A cell phone, land line, and satellite

Interactive Programming In Java Page 11

http://www.cs101.org/ipij/exprs.html 09/18/2003 11:54:46 AM

telephone might each implement the Telephone interface but each have its own specific type (e.g.
CellularTelephone). Finally, one (instance) object may implement many interface contracts: A Person may
be a Parent, an Employee, and a SoccerGoalie. A daughter, an employer, and a soccerForward would each
access this object through a different interface. In each of these cases, it is reasonable to ask, "Is this Dog (or
Telephone or Person) a Collie (or CellularTelephone or SoccerGoalie)?"

A type membership expression looks like this:

anObjectExpression instanceof ObjectTypeName

For example,

myDog instanceof Collie

aTelephone instanceof CellularTelephone

mobyDick.author() instanceof SoccerGoalie

of type membership:

instanceof Type

es to a boolean, either true or false.

The first operand, which precedes the keyword
instanceof, can be any expression whose value is of any object
(non-primitive) type. The second operand, which follows the
keyword instanceof, must be the name of an object type. As we
shall see in the next few chapters, this name may be the name of

any class or any interface.

The instanceof operator is used to determine whether it is appropriate to treat its first operand
according to the rules of the type named by its second operand. The value of an instanceof expression is a
boolean, true if it is appropriate to treat the object according to this type, false otherwise. So, for example,

"a String" instanceof String

has the value true (because "a String" is a (literal) instance of the type String), while

new Object() instanceof String

has the value false (because the new Object created by the instance creation expression new Object() is not a
String.

5.5 Expressions Involving Objects or Primitives

Method invocation and field access, instance creation and type membership are all expressions that
involve objects. These kinds of expressions cannot be used with primitive Things, although -- except for
instance creation -- their resulting values may have primitive types. For example, a method must be invoked on
an object but may require an argument that is a char or return an int. A field belongs to an object, but may
have type double. And instanceof expressions always return boolean values.

Interactive Programming In Java Page 12

http://www.cs101.org/ipij/exprs.html 09/18/2003 11:54:46 AM

In contrast, literals -- except for String literals -- are always primitives. In the next section (5.6), we
will look at other kinds of expressions that operate only on primitives and not on objects. These include
various arithmetic and logical operations as well as numeric and logical comparators. All of these operations
take advantage of the known structure of the primitive types to provide basic calculations.

There are a few kinds of expressions that operate equally on either primitives or object types. These
expressions are the focus of this section. We have already seen assignment; in this section we will also
introduce explicit cast expressions and equality testing.

Assignment expressions involve a name on the left-hand side and an expression of any type suitable for
binding to that name on the right-hand side. This means that if the name on the left-hand side is of an object
type -- a label name -- the right-hand side must be an expression with an (appropriate) object type; if the name
on the left-hand side is a primitive -- dial -- name, the expression on the right-hand side must have a
(corresponding) primitive type. The use of an assignment expression is identical whether it is operating over
object or primitive types, although the mechanics of assigning to a label name differ from the mechanics of
assigning to a dial name. (Two label names may be stuck on one object, while dial assignment involves copying
the value of one dial onto another. These distinctions are described in detail in Chapter 3: Things, Types and
Names.)

There is also one kind of expression that is primarily used with primitive Things, but that has one
object application. This is +, whose use as the arithmetic addition operator is described below. The sidebar on
String concatenation, above, explains how + can be used to glue two Things together. In this case, it is
important to distinguish the use of + as addition from + as String concatenation. They are really two separate
operations that simply happen to be spelled in the same way.
[[Footnote: There is a name for this phenomenon, the use of one operation for multiple purposes. It is called operator overloading.

This is very much like method overloading -- described briefly in Chapter 4: Interfaces and in somewhat more detail in later chapters. --

except that methods always belong to objects, not primitive Things. In some programming languages, the programmer can overload

operators, giving them additional behavior. Java does not allow the programmer to overload operators, but a few operators -- like + --

have multiple built-in meanings.]]
Java Notes

Coercion and Casting in Java

Generally, coercion happens automatically whenever it is
information-preserving.

Java only makes certain automatic -- implicit -- coercions.
For example, Java knows how to make byte into short, short into
int, int into long, long into float, and float into double. This
works because each type spans at least the magnitude range of the
ones appearing before it in the list. (A few of these coercions-- such
as long to float -- may lose precision.) These coercions -- which
are, in general, information-preserving -- are called widening. We
will see in the chapter on Inheritance that there are also widening
coercions on reference types.

Coercions in the opposite direction are called narrowing.
Java does not generally perform narrowing coercions automatically

5.5.1 Casting and Coercion:
Changing the Type of a Thing

Sometimes Things don't have the types we
might wish. For example, we might have the int 3

when we really want the double 3.0, or a Dog who
is really a Collie that can herd sheep. Coercion is the
process of viewing a Thing of one type as though it
had a different type: for example, treating an int
(like 3) as though it were a double (3.0) or a Dog as

Interactive Programming In Java Page 13

http://www.cs101.org/ipij/exprs.html 09/18/2003 11:54:46 AM

For example, Java cannot automatically convert an arbitrary int to
short, because the intmight contain too much information to fit
into a short. The number 60000 is a perfectly legitimate value for a
int, but not for a short. There is no mapping from ints to shorts
that accurately captures the magnitude information in each possible
int. A coercion of this kind -- such as int to short-- which may no
preserve all of the information in the original object, is called lossy
[[Footnote: There is one instance in which Java performs a
narrowing but non-lossy coercion automatically. This is in the case
of a sufficiently small int constant assigned to a narrower integer
type. This allows literals-- which would otherwise have type int -- to
be assigned to names with byte and short type: short smallNumbe

= 32;]]
Explicit casting allows both widening and narrowing

coercions: you can cast an int to long, as in the example above, or
to short -- a cast that may lose information. Casts on object types
may be made only to other types that are legal types of the object
being cast. [[Footnote: An object xmay be cast to type T iff x
instanceof T is true.]] Certain casts may be illegal and will cause
(compile- or run-time) errors or exceptions.

though it were a Collie. Coercion does not change the
Thing; it merely provides a different view.

5.5.1.1 Widening and Narrowing

Some coercions, such as treating an int or a
float as a double or a Collie as a generic Dog, are
information-preserving. That is, every int (and every
float) has an accurate representation as a double.
These are called widening coercions, and Java can
do them automatically when types demand it. For
example, the (stylistically ugly) definition

double d = 3;

implicitly coerces the int 3 into the double 3.0

before making the assignment to d. Similarly, if you've made the appropriate definitions, Java can figure out
that it's OK to treat a CellTelephone as a Telephone or a Collie as a Dog.

Other coercions, such as treating the double 3.0 as though it were an int or a Dog as a Collie, are
not necessarily information-preserving. (The double 3.001 might also be treated as the int 3, so this type
transformation in general loses information.) You may know that a particular Dog is really a Collie, but Java
won't automatically treat it as such since some Dog might not be a Collie. These coercions, called narrowing,
are not performed by Java automatically. Instead, you need to indicate a narrowing conversion to Java by using
an explicit cast expression as described below.

Coercion is a way of looking at a Thing; it does not actually change the Thing itself. A coercion simply
provides a different version (with a different type). For dial types, this version is essentially a copy. For label
types, it is another "view" of the same object.

Java's specific treatment of coercion is described more fully in the sidebar on Coercion and Casting in
Java.

5.5.1.2 Explicit Cast Expressions

Sometimes, you need to change the type of Thing even when Java will not do so automatically. This is
accomplished by means of an explicit cast expression. Like automatic coercion, a cast expression gives you a
view of the Thing cast as a different type.

For example, if you have a Dog and know that it is actually a Collie, you can tell Java to treat it as a
Collie. It would be an error to ask

myDog.herdSheep()

Interactive Programming In Java Page 14

http://www.cs101.org/ipij/exprs.html 09/18/2003 11:54:46 AM

-- sheep herding is not an ability of most Dogs. But if you know that myDog is a Collie, you can tell Java to
treat it as a Collie and then ask it to herd sheep. The syntax of this request -- which we will examine below -- is

((Collie> myDog).herdSheep()

or, more verbosely,

Collie aCollie;

aCollie = (Collie> myDog;

aCollie.herdSheep()

[[Footnote: The more succinct -- and preferred -- form of the Collie cast actually begins with two parentheses. One -- the pair around

Collie -- is the cast expression. The other -- surrounding (Collie) myDog -- is used for grouping as described in the final section of this

chapter.]]

When you use an explicit cast expression, you must be sure that the thing you're casting really can be
coerced to its new type: for example, that the Dog you are casting really is a Collie. The explicit use of a cast
expression tells Java that you really do mean to do something that Java can't tell is OK, like make a lossy
coercion. It is your responsibility to be sure that the request you are making really is OK. An instanceof
expression can be used to verify type membership before a cast expression.

The syntax of a cast expression is

(type-name) expression to be cast

That is, you put the name of the type that you wish the Thing to have in parentheses before the (expression
representing the) Thing.

For example, if myInt is an int-sized dial displaying the value 3 -- perhaps from

int myInt = 3;

-- then

(long) myInt

is a long-sized dial displaying 3 and

(double) myInt

is an expression with the same type and value as the literal expression 3.0. Throughout this, myInt itself
remains an int-sized dial displaying the value 3. Casting, like implicit coercion, does not actually modify the
castee.

of explicit cast:

pe) oldThing

oldThing; type is NewType

Evaluating a cast expression yields the value of the cast operand (in this
case, myInt), but with the type of the explicit cast (in this case, long). A cast
expression does not alter its operand in any way; it simply yields a new view of
an existing value with a different type. Some casts are straightforward and

Interactive Programming In Java Page 15

http://www.cs101.org/ipij/exprs.html 09/18/2003 11:54:46 AM

appropriate; some risk losing information; and most are simply not allowed. For example, in Java you cannot
cast an int to boolean.

Explicit cast expressions are also allowed from one Java object type to another under certain
circumstances. Specifically, a Java object may be cast to a type if the object is an instanceof that type.

For further details on explicit cast expressions, see the sidebar on Coercion and Casting in Java.

Java Notes

Java Operators

Java operators include

+ - * / | & ^ % << >>
+= -= *= /= |= &= ^= %= <<= >>=
< > <= >= == !=
! && ||
++ --
= ?:

The arithmetic operators and bit-wise logical operators in
the first row are, respectively, addition, subtraction, multiplication,
division, bitwise or, bitwise and, bitwise negation, modulus, left-shif
sign-extended right-shift, and zero-extended right-shift. The +
operator is also used for String concatenation when at least one of
its arguments is a String. The - operator can also be used as unary
(one-argument) negation.

The operators in the second row are operator-assignment
operators that combine their correlate in the first row with an
assignment operation. Thus x += 2 has the same effect as x = x +

2; the difference is that the left-hand side of the combined operator
is evaluated only once. The value of an operator assignment
expression is the new value of the left-hand side; the type is the typ
of the left-hand side. All assignment expressions modify the name
that is their left-hand side.

The third row above lists the six comparison operators, eac
of which returns a boolean. The final comparison is not-equal.

The fourth row lists the logical operators: logical negation,
logical conjunction (and), and logical disjunction (or). Each of these
takes boolean arguments -- one in the case of negation, two in the
case of conjunction and disjunction -- and returns a boolean.

The operators in the fifth row are autoincrement and
autodecrement. These can be used as either prefix or postfix
operators. Both ++x and x modify x, leaving it incremented.
However, ++x returns the incremented value of x, while x++ return
the unincremented value. The -- operator works similarly.

The final two operators are simple assignment (which work
like the compound assignments, above) and the ternary (three-
operand) expression conditional:

x > y ? a : b

evaluates to a if x > y and to b otherwise. (Any boolean-valued
expression may be used instead of x > y and any expression may b
used in place of a or b.)

5.5.2 Equality Testing and Identity

The final primitive- and object-Thing
operation is equality testing. There are actually two
equality operators that can be used with either
primitive or object Things: ==, which tests whether
two Things are the same, and !=, which tests whether
two Things are different.

Beware: == tests for equality; = is
the assignment operator.

expression1 == expression2

is an expression with boolean type; its value is true if
expression2 are the same and false otherwise.

expression1 != expression2

also has boolean type, but its value is false if
expression2 are the same and true otherwise.

Interactive Programming In Java Page 16

http://www.cs101.org/ipij/exprs.html 09/18/2003 11:54:46 AM

ion1 == expression2 Type is boolean; true iff expression2 are the same. expression1 !=

ion2 Type is boolean; true iff expression2 are different.

Wh
are two
Things
the

same?

For primitive types, Things are the same whenever they "look" the same, i.e., when their (types are
compatible and) values are indistinguishable. [[Footnote: Java actually performs any automatic coercions available to
compare primitive objects, so (int) 3 == (long) 3 is true.]]

For object types, values are the same exactly when the two expressions refer to the same object.

This last point is actually rather subtle. Two objects may look different but actually be the same, or
they may appear similar but actually be different. Consider, for example, identical twins x and y. Although they
may look exactly the same, they are still two different people. If one gets a haircut, the other's hair doesn't
automatically get shorter. If one takes a bath, the other doesn't get clean. Thus they are different: x == y is
false.

For Java equality testing, it is not sufficient for two objects to look alike, as in the case of identical
twins; they must actually be the same object, so that modifications to one will necessarily be reflected in the
other. On the other hand, two object Things can be the same even if they happen to be viewed through
different types: my CellTelephone and your Telephone might actually be the identical object.

Equality of primitive Things is different. The int 3 has no internal structure that can be changed (the
way that one twin's hair can be cut). If you change 3, you don't have 3 any more. If dial name a and dial name
b are each of type int and each has 3 as its value, then a == b is true.

5.6 Complex Expressions on Primitive Types: Operations

Perhaps the most common kind of expression on primitive types is made up of two expressions
combined with an operator. Java operators are described in the sidebar on Java Operators. They include most
of the common arithmetic operators as well as facilities for comparisons, logical operations, and other useful
functions. Assignment and equality testing, described above, are also Java operators. Of special note are + for
String concatenation and unary - for negation.

of binary operation:

peration otherThing

bar for type, value.

Each operation takes arguments of specified types and produces a result
with a particular value and type. For example, if x and y are both of type int, so is
x + y. The + operator can be used to combine any two numeric types. The two
Things combined with the operator are called the operands. In the expression x +

y, + is the operator and x and y are the operands. Some operators take two
operands. These are called binary operations. Other operators take only one operand; these are the unary

Interactive Programming In Java Page 17

http://www.cs101.org/ipij/exprs.html 09/18/2003 11:54:46 AM

operations. One operator -- ?: -- takes three operands. The operands of this operator can be any expressions,
not just primitives or objects.

5.6.1 Arithmetic Operation Expressions

The operator + is an example of a kind of operator called an arithmetic operator. The rules for
evaluation of the binary arithmetic operators +, -, *, /, and % are simple: compute the appropriate
mathematical function (addition, subtraction, multiplication, division, and modulus, respectively), preserving
the types of the operands. As explained in the sidebar on Arithmetic Expressions, an expression of the form

erator type has type type type operator type

has type type for all of the basic arithmetic operations on most of the
primitive types. That is, for these arithmetic operators, if the types of the two operands are the same, the result
-- the value of the complete expression -- will generally also be of that type. For example, the expressions

3 + 7

2.0 * 5.6

5 / 2

evaluate to the int 10, the double 11.2, and -- perhaps surprisingly -- the int 2, not 2.5 (or 2.0),
respectively.

Java Notes

Types of Arithmetic Expressions

Arithmetic expressions include the binary operators for
addition (+), subtraction (-), multiplication (*), division (/), and the
modulus or remainder operation (%). In addition, there are two una
arithmetic operators, + and -.

Arithmetic operations work only with values of type int,
long, float, or double. When a (unary or binary) arithmetic
expression is invoked with a value of type short, byte, or char, Jav
automatically widens that operand to int (or to a wider type if the
other operand so requires). For further details on widening, see the
sidebar on Coercion and Casting in Java.

When the operands of a binary arithmetic expression are of
the same type, the complete expression also has that type, except
that no binary arithmetic expression has type short, byte, or char.
This is because operands of these types are automatically widened.

When the operands are of different types, Java will
automatically widens one to the other.

The values of the expressions involving the binary operator
+, -, *, and / are the sum, difference, product, and quotient of their
(possibly widened) operands, respectively.

The value of x % y is the (appropriately widened) remainde
when x is divided by y.

Sometimes, an operator needs to treat one of
its operands as though it were of a different type. For
example, if you try to add 7.4 (a double) and 3 (an
int), Java will automatically treat the int 3 as
though it were the equivalent double, 3.0. This way,
Java can add the two numbers using rules for adding
two numbers of the same type. This kind of treating
numbers -- or other Things -- as though they had
different type is called coercion. Coercion does not
actually change the Thing, it simply provides a
different version (with a different type). For dial
types, this version is essentially a copy. For label
types, it is another "view" of the same object.
Coercion is described more fully in the sidebar on
Coercion and Casting in Java.

Other arithmetic operators work in much the
same way as +. Additional information on arithmetic

Interactive Programming In Java Page 18

http://www.cs101.org/ipij/exprs.html 09/18/2003 11:54:46 AM

The value of a unary - expression is the additive inverse of
its (possibly widened) operand; a unary + expression has the value o
its (possibly widened) operand.

expressions is summarized in the sidebar below. Note
in particular that / (the division operator) obeys the
same type op type is type rule. This means that

7 / 2

has type int (and the value 3). If you want a more precise answer -- 3.5 -- you can make sure that at least one
operand is a floating point number:

7.0 / 2

has type double, as does

7 / 2.0

and (best style)

7.0 / 2.0

In addition to the binary (two-argument) arithmetic operators described above, Java includes a unary
minus operator that takes one argument and negates it. So -5 is a (literal) int, while - 5 is an arithmetic
expression that has value -5 and type int. (Subtle, no?)

5.6.2 Comparator Expressions

Not all operators are arithmetic. There is a set of boolean-yielding operators, sometimes called
comparators, that operate on numeric types. These include == and !=, which have already been described, as
well as more specialized numeric comparators such as < and <=. The sidebar on Java Operators contains a
complete list.

Each of these operations takes two numbers, coerces them appropriately, and then returns a boolean
indicating whether the relationship holds of the two numbers in the order specified. For example,

6 > 3.0

is true, but

5 <= 3

is false.

Evaluating one of these expressions is much like evaluating an arithmetic expression. The values of the
operands are compared using a rule specific to the operator -- such as > or <= -- and the resulting boolean
value is the value of the expression.

Interactive Programming In Java Page 19

http://www.cs101.org/ipij/exprs.html 09/18/2003 11:54:46 AM

Java Notes

Other Assignment Operators

Compound Assignment
Java has several variants on the simple assignment statemen

If we have already declared total as an int, we can say:

total = 6

or

total = total + 1

(The second expression uses the fact that total + 1 is an
expression with type int and value one greater than total to form
an assignment expression whose second operand is an arithmetic
expression.) This last expression -- adding to a name -- is pretty
common, and so it has a convenient shorthand:

total += 1

The += operator is one of a class of compound assignmen
operators. It works by computing the value of its first operand, the
adding its second operand to that value and assigning the result to
the name represented by the first operand. In other words, the
expression above is exactly the same as saying total = total + 1

This kind of compound assignment can be used with any number --
or other appropriate expression -- as the second operand, of course
There are also other compound assignment operators in Java,
including -=, *=, /=, and %=. Like the + operator, the += operator
works for both numeric addition and String concatenation. Like
their longhand forms -- the simple assignment equivalents -- these
expressions have type and value of their left-hand side (after the
assignment).

5.6.3 AutoIncrement and AutoDecremen

There is another family of side-effecting operators that are
related to assignment. These operators are autoincrement and
autodecrement. The postfix autoincrement expression

total++

is similar to total = total + 1 (or total += 1), but it has the
value of total before the assignment. The prefix autoincrement
expression

++total

also adds one to total, but has the value of total after the
assignment. (Remember: ++var first increments, then produces a
value; var++ produces the value first.) The two (prefix and postfix)
autodecrement operators work similarly.

5.6.4 Logical Operator Expressions

Another set of operators combines booleans
directly. These include && (conjunction, or "and")
and || (disjunction, or "or"). For example, the
expression true || false is true. While this is not
very interesting by itself, these boolean operators can
be used with names (of type boolean, of course) or
in complex expressions to great effect. For example,
rainy || snowy might be a reasonable way to
express bad weather; it will (presumably) have the
value true exactly when it is precipitating. There is
also a unary boolean negation operator, denoted !.
The Java fragment

!(rainy || snowy || overcast)

might be a good expression for sunshine.

The rule for evaluating negation is simply to
invert the boolean value of its operand. The rules for
evaluating conjunction and disjunction are a bit more
complex. First, the left operand is evaluated. If the
value of the expression can be determined at this
point (i.e., if the first operand to a conjunction is
false or the first operand of a disjunction is true),
evaluation terminates with this value. Otherwise, the
second operand is evaluated and the resulting value
computed. The type of each of these expressions is
boolean.

These odd-seeming rules are actually quite
useful. You can exploit them to insert tests. For
example, you might want to compute whether (x / y)
> z, but it might be the case that y is 0. By testing
whether (y == 0) || ((x / y) > z), you can eliminate
the potential divide-by-zero error. (If y is 0, the first
operand to the disjunction -- (y == 0) -- will be
true, so evaluation will stop and the value of the whole will be true. (A comparable formula can be written to
return false if either y is 0 or (x / y) > z.)

Interactive Programming In Java Page 20

http://www.cs101.org/ipij/exprs.html 09/18/2003 11:54:46 AM

5.7 Parenthetical Expressions and Precedence

A parenthetical expression is simply an expression wrapped in a pair of parentheses. The value of a
parenthetical expression is the value of its content expression, i.e., the value of the expression between the (
and the). The type of a parenthetical expression is the same as the type of the expression between the
parentheses.

Parenthetical expressions are extremely useful when combining expressions. For example, suppose that
the name x has the value 6 and consider the following expression:

"I have " + x + 3 + " monkeys"

The person who wrote this expression might well have meant

"I have " + (x + 3) + " monkeys"

which evaluates to "I have 9 monkeys". However, Java evaluates the expression by grouping
subexpressions from the left, more like

(("I have " + x) + 3) + " monkeys"

This evaluates to "I have 63 monkeys"! Isolating x + 3 with parentheses makes the + in x + 3 behave as
addition, not String concatenation.

Note that, in giving the evaluation rules for expressions, white space doesn't matter --

x >= 2 + 3

is identical to

x >=2 + 3

-- but punctuation does matter. For example,

2 + 3 * 2

doesn't have the same value as 5 * 2 --

2 + 3 * 2

is 8. We can use parentheses to fix this, though:

(2 + 3) * 2

is 10 again. In this case, parentheses change the order of evaluation of subexpressions (or, equivalently, how
the expression is divided into subexpressions.) In the case of

2 + 3 * 2

Interactive Programming In Java Page 21

http://www.cs101.org/ipij/exprs.html 09/18/2003 11:54:46 AM

if you evaluate the + first, then the *, you get 5 * 2, while if you evaluate the * first, you get 2 + 6. (Java
evaluates the * first.)

How do you know which way an expression will be evaluated? In these situations, where one order of
operation would produce a different answer from another, we fall back on the rules of precedence of
expression evaluation. In Java, just as in traditional mathematics, * and / take precedence over + and -, so

2 + 3 * 2

really is 8. (Another way of saying this is that the * is more powerful than the +, so the * grabs the 3 and
combines it with the 2 before the + has a chance to do anything. This is what we mean when we say that * has
higher precedence than +: it claims its operands first.)

A full listing of the order of precedence in Java is included in the sidebar on Java Operator Precedence.
Parentheses have higher precedence than anything else, so it is always a good idea to use parentheses liberally
to punctuate your expressions. This makes it far easier for someone to read your code as well.

Chapter Summary

Evaluating an expression produces a Thing with a type and a value. Each kind of expression
has its own rules of evaluation that determine the type and value of the Thing it produces.

Simple expressions include literals and names.

A literal has its apparent type and value.

A name has its declared type and assigned value.

Assignment expressions are generally used for their effects -- modifying the value associated
with a (label or dial) name -- but, as expressions, also have type and value. The value of an
assignment expression is the value assigned; the type is the type of the value assigned.

Several kinds of expressions operate only on objects:

A method invocation expression asks an object to perform an action. It has the type
and value returned by the method. Methods may be side-effecting.

A field access expression is like an ordinary name expression: its type is the field's
declared type and its value is the field's current assigned value, except in the context
of assignment expressions.

An instance creation expression's value is a brand new object whose type is the (class)
type with which the constructor expression is invoked.

An type membership -- instanceof -- expression tells you whether an object can be
treated as a member of a particular (class) type. Its type is boolean.

Some expressions can operate on either primitive Things or objects:

Interactive Programming In Java Page 22

http://www.cs101.org/ipij/exprs.html 09/18/2003 11:54:46 AM

An explicit cast expression's value is the same as the Thing it is given, but with a
different type.

Equality testing expressions produce boolean values.

Two primitive Things are the same if they appear to be the same.

Two objects are the same only if they are actually the same object.

Operator expressions combine or produce modifications of simpler expressions.

Arithmetic operators compute mathematical functions; the type of an arithmetic
operation expression is typically the wider of its operand types.

Logical operators compute binary logical functions; the type of a logical operation
expression is boolean.

Explicit cast expressions have the type of the cast operation and the same value as the
cast operand.

None of these operations actually modifies any of its operands. However,
autoincrement, autodecrement, and the shift operators do modify their operands.

A compound expression contains multiple sub-expressions. It is evaluated by evaluating
each of its constituent parts, then combining the resulting Things.

Parentheses can be used to group expressions. Otherwise, expressions are evaluated in the
order of precedence established by Java.

Exercises

1. In Java, every expression has a type. Assume that the following declarations apply:

int i, j, c;
double d;
short s;
long l;
float f;
boolean b;

For each expression below, if it is syntactically legal Java, indicate its type (not its
value). If it is not syntactically valid, indicate why.

a. 6

Interactive Programming In Java Page 23

http://www.cs101.org/ipij/exprs.html 09/18/2003 11:54:46 AM

b. 24L

c. +3.5

d. 3.5f

e. 2e-16

f. -25b

g. i

h. i+3

i. i+3.0

j. i+s

k. l+d

l. f+s

m. i / 0

n. 4 * 3.2

o. i = 0

p. i == 0

q. b = 0

r. b == 0

s. 'c'

t. "An expression in double-quotes"

u. "An expression in double-quotes" + "another one"

v. "6" + 3

w. !b

Interactive Programming In Java Page 24

http://www.cs101.org/ipij/exprs.html 09/18/2003 11:54:46 AM

x. !i

y. b || true

z. i += s

aa. s += i

ab. i += f

ac. l = i = s

ad. i = l += s

ae. l++

af. (long) s

ag. s

ah. (short) l

ai. l

2. Give examples of three expressions with side effects.

3. For this question, you may wish to consult the sidebar on Java Operator Precedence.

Assume the following definitions:

int i = 93;

boolean b = true;

What is the value of each of the following expressions? Which ones produce errors in
evaluation?

a. 2.0 + 3.5 * 7

b. ("top " + "to " + "bottom").toUpperCase()

c. "the answer is " + 6 * 7

d. 4 + 6 + " is " + 10

e. i > 0 && i < 100

Interactive Programming In Java Page 25

http://www.cs101.org/ipij/exprs.html 09/18/2003 11:54:46 AM

f. b = i < 0

g. ! (i == 0) && 100 / i

4. Assume that x and b are previously defined names for an int and a boolean, respectively.
Give examples of each of the following:

a. An expression whose type is int and whose value is more than a previously defined x.

b. An expression whose type is boolean and whose value is true when x is between 5
and 15.

c. An expression whose type is double and whose value is half of x's.

d. An expression whose type is long and whose value is the remainder when x is divided
by 7.

e. An expression whose type is boolean and whose value is the opposite of the boolean
b.

f. An expression whose type is boolean and whose value is true exactly when the int x is
evenly divisible by 5.

g. An expression whose type is String and whose value is read from the user's keyboard.

© 2003 Lynn Andrea Stein

This chapter is excerpted from a draft of Introduction to Interactive Programming In Java, a forthcoming textbook. It
is a part of the course materials developed as a part of Lynn Andrea Stein's Rethinking CS101 Project at the
Computers and Cognition Laboratory of the Franklin W. Olin College of Engineering and formerly at the MIT
AI Lab and the Department of Electrical Engineering and Computer Science at the Massachusetts Institute of
Technology.

Questions or comments:
<webmaster@cs101.org>

Interactive Programming In Java Page 26

http://www.cs101.org/ipij/exprs.html 09/18/2003 11:54:46 AM

